The size function for quadratic extensions of complex quadratic fields
نویسندگان
چکیده
منابع مشابه
Unramified Quaternion Extensions of Quadratic Number Fields
The first mathematician who studied quaternion extensions (H8-extensions for short) was Dedekind [6]; he gave Q( √ (2 + √ 2)(3 + √ 6) ) as an example. The question whether given quadratic or biquadratic number fields can be embedded in a quaternion extension was extensively studied by Rosenblüth [32], Reichardt [31], Witt [36], and Damey and Martinet [5]; see Ledet [19] and the surveys [15] and...
متن کاملUnramified Alternating Extensions of Quadratic Fields
We exhibit, for each n ≥ 5, infinitely many quadratic number fields admitting unramified degree n extensions with prescribed signature whose normal closures have Galois group An. This generalizes a result of Uchida and Yamamoto, which did not include the ability to restrict the signature, and a result of Yamamura, which was the case n = 5. It is a folk conjecture that for n ≥ 5, all but finitel...
متن کاملQuadratic extensions of totally real quintic fields
In this work, we establish lists for each signature of tenth degree number fields containing a totally real quintic subfield and of discriminant less than 1013 in absolute value. For each field in the list we give its discriminant, the discriminant of its subfield, a relative polynomial generating the field over one of its subfields, the corresponding polynomial over Q, and the Galois group of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal de Théorie des Nombres de Bordeaux
سال: 2017
ISSN: 1246-7405,2118-8572
DOI: 10.5802/jtnb.978